

T.C.

ESKİŞEHİR OSMANGAZİ UNİVERSİTY FACULTY OF SCIENCES

MATHEMATICS AND COMPUTER SCIENCES DEPARTMENT

COURSE INFORMATION FORM

Course Name	Course Code
Non-Euclidean Geometries II	

Semester	Number of Course Hours per Week		Credit	ECTS	
Semester	Theory	Practice	Credit	ECIS	
8	2	2		6	

Course Category (Credit)					
Basic Sciences Engineering Sciences Design General Education Social					
X					

Course Language	Course Level	Course Type
Turkish	Undergraduate	Elective

Prerequisite(s) if any	
Objectives of the Course	Learning non-Euclidean taxicab geometry and investigating the invariance of some Euclidean geometry theorems in taxicab geometry.
Short Course Content	Taxicab geometry and its properties, Ellipses, Hyperbolas, Parabolas and their applications in taxicab geometry, Distance from a point to a line in taxicab geometry, Applications of taxicab geometry in urban geography, Taxicab versions of some Euclidean geometry theorems

Learning Outcomes of the Course	Contributed PO(s)	Teaching Methods *	Measuring Methods **
1 Learning taxicab geometry	2,3,9,13	1,5,10,11,12	A,D
To have knowledge about the invariance of some Euclidean geometry theorems in taxicab geometry	2,3,9,13	1,5,10,11,12	A,D
3			
4			
5			
6			
7			
8			

^{*}Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

Main Textbook	Richard S. Millman, George D. Parker, Geometry: A metric approach with models
Supporting References	 Eugene F. Krause, Taxicab Geometry: An Adventure in Non-Euclidean Geometry Anton Petrunin, Euclidean plane and its relatives: A minimalist introduction
Necessary Course Material	

	Course Schedule
1	Taxicab geometry and its properties
2	Ellipses in taxicab geometry
3	Ellipses and their applications in taxicab geometry
4	Hyperbolas in taxicab geometry
5	Hyperbolas and their applications in taxicab geometry
6	Distance from a point to a line in taxicab geometry
7	Parabolas in taxicab geometry
8	Mid-Term Exam
9	Parabolas and their applications in taxicab geometry
10	Applications of taxicab geometry in urban geography
11	Applications of taxicab geometry in urban geography
12	Taxicab versions of some Euclidean geometry theorems
13	Taxicab versions of some Euclidean geometry theorems
14	Taxicab versions of some Euclidean geometry theorems
15	Taxicab versions of some Euclidean geometry theorems
16,17	Final Exam

Calculation of Course Workload				
Activities	Number	Time (Hour)	Total Workload (Hour)	
Course Time (number of course hours per week)	14	4	56	
Classroom Studying Time (review, reinforcing, prestudy,)	14	2	28	
Homework				
Quiz Exam				
Studying for Quiz Exam				
Oral exam				
Studying for Oral Exam				
Report (Preparation and presentation time included)	2	30	60	
Project (Preparation and presentation time included)				
Presentation (Preparation time included)				
Mid-Term Exam				
Studying for Mid-Term Exam				
Final Exam	1	2	2	
Studying for Final Exam	1	40	40	
	Т	otal workload	186	
	Total	workload / 30	186/30	
	Course	ECTS Credit	6	

Evaluation			
Activity Type	%		
Homework	50		
Bir öğe seçin.			
Bir öğe seçin.			
Final Exam	50		
Total	100		

	RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAM OUTCOMES (PO) (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)					
NO	PROGRAM OUTCOME					
1	The ability to apply knowledges of Mathematics and Computer Sciences,	1				
2	To have sufficient theoretical and practical knowledge of Mathematics at international level,					
3	The ability of describing, modelling and solving of mathematical problems at Mathematics and related subjects,	5				
4	The skill to solve and design a problem process in accordance with a defined target,	3				
5	Skills to analyze data, interpret and apply to other datum and using these data on computer,	1				
6	The skill to use the modern techniques and computational tools needed for mathematical applications,	3				
7	The skill to make team work within the discipline and interdisciplinary,	4				
8	The ability to improve oneself by following the developments on other modern, scientific and technological subjects as well as Mathematics and Computer Sciences,	2				
9	The skill to communicate orally and in written way, in a clear and concise manner by having individual work skills and ability to independently decide and analytical thinking,	5				
10	The skill to have professional and ethical responsibility,	1				
11	The skill to have consciousness for quality issues and scientific research,	2				
12	The skill to be sensitive to environmental issues related with problems and development of living area and consistent in the social relations,	1				
13	Ability to solve problems in the working life faced to find an appropriate algoritms via mathematical modeling and to write computer programs,	5				
14	The skill to developed design of software systems at different complex levels,	2				
15	The credence of necessity of life-long learning and ability to apply the formation long-life learning.	1				

LECTUTER(S)				
Prepared by	Ass. Prof. Temel Ermiş			
Signature(s)				

Date: 26.07.2024