

ESOGÜ Mathematics and Computer Sciences COURSE INFORMATION FORM

SEMESTER Fall COURSE COURSE 821617012 Non-Euclidean Geometries I CODE NAME WEEKLY COURSE PERIOD **COURSE OF** SEMESTER ECTS Theory Practice Credit LANGUAGE Labratory TYPE Turkish COMPULSORY (X) ELECTIVE () 7 2 2 0 3 5 COURSE CATAGORY **Mathematics** Computer Social Sciences Х ASSESSMENT CRITERIA **Evaluation Type** Quantity % <mark>40</mark> 1st Mid-Term 1 2nd Mid-Term Quiz **MID-TERM** Homework Project Report Others (.....) 60 1 FINAL EXAM **PREREQUIEITE(S)** None Axiomatic Systems, Euclidean Axioms, Non-Euclidean Geometries, **COURSE DESCRIPTION** Taxicab Plane Geometry. The main of the course is to introduce the concepts and techniques involved in the basic topics listed in this lecture and to develope skills in **COURSE OBJECTIVES** applying those concepts and techniques to the solution of problems. Also, to enable them to have knowledge about Euclidean and non-Euclidean geometries. ADDITIVE OF COURSE TO APPLY Gain analytical thinking and problem solving ability. **PROFESSIONAL EDUATION** The aim of this course is to teach thinking with transformations in **COURSE OUTCOMES** geometry and to show how new geometries or systems are obtainable with using transformation. 1) Geometry: A Metric Approach with Models (Undergraduate Texts in Mathematics), Richard S. Millman, George D. Parker **TEXTBOOK** 2) Taxicab Geometry: An Adventure in Non-Euclidean Geometry, Eugene F. Krause Transformation Geometry, George E. Martin. **OTHER REFERENCES** None TOOLS AND EQUIPMENTS REQUIRED

COURSE SYLLABUS			
WEEK	TOPICS		
1	Axiomatic Systems and Models		
2	Axiomatic Systems and Models		
3	Axiomatic Systems and Models		
4	Euclidean Plane Geometry Axioms		
5	Euclidean Plane Geometry Axioms		
6	Euclidean Plane Geometry Axioms		
7	Non-Euclidean Plane Geometry Models		
8	Non-Euclidean Plane Geometry Models		
9	Non-Euclidean Plane Geometry Models		
10	Taxicab Plane Geometry		
11	Distance of a Point to Line in Taxicab Plane Geometry		
12	Circle in Taxicab Plane Geometry		
13	Ellipse in Taxicab Plane Geometry		
14	Ellipse in Taxicab Plane Geometry		
15,16	Final Exam		

NO	PROGRAM OUTCOMES	3	2	1
1	The ability to apply knowledges of Mathematics - Computer,	Х		
2	To have sufficient theoretical and practical knowledge of Mathematics at international level,	X		
3	The ability of describing, modelling and solving of mathematical problems at Mathematics and related subjects,	X		
4	The skill to solve and design a problem process in accordance with a defined target,	Х		
5	Skills to analyze data, interpret and apply to other datum and using these data on computer,		X	
6	The skill to use the modern techniques and computational tools needed for mathematical applications,		X	
7	The skill to make team work within the discipline and interdisciplinary,	Х		
8	The ability to improve oneself by following the developments on other modern, scientific and technological subjects as well as Mathematics - Computer,		X	
9	The skill to communicate orally and in written way, in a clear and concise manner by having individual work skills and ability to independently decide and analytical thinking,	X		
10	The skill to have professional and ethical responsibility,	Х		
11	The skill to have consciousness for quality issues and scientific research,		Х	
12	The skill to be sensitive to environmental issues related with problems and development of living area and consistent in the social relations,			X
13	Ability to solve problems in the working life faced to find an appropriate algoritms via mathematical modeling and to write computer programs,		X	
14	The skill to developed design of software systems at different complex levels,			X
15	The credence of necessity of life-long learning and ability to apply the formation long-life learning.		X	
1:Non	1:None. 2:Partially contribution. 3: Completely contribution.			

Instructor(s): Ass. Prof. Dr. Temel Ermiş

Signature:

Date: