

ESKİŞEHİR OSMANGAZİ UNİVERSİTY

FACULTY OF SCIENCES

MATHEMATICS AND COMPUTER SCIENCES DEPARTMENT

COURSE INFORMATION FORM

Course Name				Course Code		
ARTIFICIAL NETWORKS				821618009		
Number of Course Hours per Week						
Semester	Theory	Practice	Credit		ECTS	
8	3	0			5	
Course Category (Credit)						
Basic Sciences	Engineering Sciences	Design	Genera	l Education	Social	
	Х					

Course Language	Course Level	Course Type	
Turkish	Undergraduate	Elective	

Prerequisite(s) if any	Calculus I and Linear algebra, c omputer programming		
Objectives of the Course	The course will teach a variety of neural networks and introduce the theory of some neuron networks.		
Short Course Content	Gives an introduction to basic (artificial) neural network architectures and learning rules. Emphasis is placed on mathematical analysis of these networks, on methods of training them, and on their application to practical problems		

	Learning Outcomes of the Course	Contributed PO(s)	Teaching Methods *	Measuring Methods **
1	Students will understand the concept of artificial neural networks.	1, 2, 5	1, 2, 6	А
2	Students will be able to learn artificial neural network techniques.	1, 2, 3	1, 2, 6	А
3	Students will be able to evaluate solutions found using these methods.	1, 2, 4	1, 2, 6	А
4	Students will be able to follow current research on artificial neural networks.	1, 2, 6	1.7. 11	А
5	Students will learn to use artificial neural network software packages.	1, 2, 5	1, 2, 6, 14	А

^{*}Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

Main Textbook	Fundamentals of Neural Networks, Laurene V. Fausett		
Supporting References	1) Neural Networks: A Comprehensive Foundation Simon S. Haykin		
Necessary Course Material			

	Course Schedule				
1	Introduction to artificial neural networks				
2	Basics of network training				
3	Supervised Learning: The Perceptron, Adalines				
4	Supervised Learning: Multi-layer perceptrons (MLPs) Backpropagation				
5	Unsupervised Learning: Simple Competitive Networks: Winner-take-all, Hamming network				
7	Learning Vector Quantization (LVQ), Counterpropagation Networks (CPN)				
8	Midterm				
9	Adaptive Resonance Theory (ART)				
10	Kohonen Self-Organizing Maps (SOMs)				
11	Support Vector Machines				
12	Applications				
13	Hopfield Networks				
14	Some applications of artificial neural networks				
15	Some applications of artificial neural networks				
16,17	Final Exam				

Calculation of Course Workload			
Activities	Number	Time (Hour)	Total Workload (Hour)
Course Time (number of course hours per week)	14	3	42
Classroom Studying Time (review, reinforcing, prestudy,)	14	3	42
Homework	5	3	15
Quiz Exam			
Studying for Quiz Exam			
Oral exam			
Studying for Oral Exam			
Report (Preparation and presentation time included)			
Project (Preparation and presentation time included)			
Presentation (Preparation time included)			
Mid-Term Exam	1	2	2
Studying for Mid-Term Exam	1	20	20
Final Exam	1	2	2
Studying for Final Exam	1	30	30
L	Total workload		138
	Total workload / 30		4,6
	Course	ECTS Credit	5

Evaluation			
Activity Type	%		
Mid-term	50		
Quiz			
Homework			
Bir öğe seçin.			
Bir öğe seçin.			
Final Exam	50		
Total	100		

	RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAM OUTCOMES (PO) (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)			
NO	PROGRAM OUTCOME			
1	Adequate knowledge of mathematics, science and Computer Engineering; ability to practice theoretical and practical knowledge of these areas into modeling and solving problems of Computer Engineering.	3		
2	Ability to identify complex engineering problems in Computer Engineering and related fields, for this purpose having skills to formulate, select and apply appropriate methods.	4		
3	Having skills to apply modern design methods to design a complex system, equipment or product that should work under realistic conditions and constraints and satisfy specific requirements concerning the Computer Engineering.	2		
4	Having skills to develop, select and apply modern techniques and tools needed for Engineering applications, skills to use information technology effectively.	3		
5	Skills to design and conduct tests, collect data, analyze results, and interpret data for the experimental investigation of Computer Engineering problems.	3		
6	Ability to function effectively as an individual and as a member of teams within the discipline and in multidiscipline areas.	3		
7	Communicating effectively in oral and written form in Turkish and one foreign language.	3		
8	Awareness of the necessity of lifelong learning, access to information, monitoring developments in science and technology and the ability to self-renewing.	3		
9	Understanding of professional and ethical responsibility.	3		
10	Information on project management, change management and risk management practices, awareness on entrepreneurship, innovation and sustainable development.	3		
11	Information about universal and societal effects of engineering applications on health, safety and environment; awareness of the legal consequences of engineering solutions.	3		

LECTUTER(S)					
Prepared by	Doç. Dr. Özer Çelik				
Signature(s)					

Date:06.06.2024