

T.C.

ESKİŞEHİR OSMANGAZİ UNİVERSİTY FACULTY OF SCIENCES

MATHEMATICS AND COMPUTER SCIENCES DEPARTMENT

COURSE INFORMATION FORM

Course Name	Course Code
Models of Real Projective Plane I	

Semester	Number of Cours	se Hours per Week	Credit	ECTS	
Semester	Theory	Practice	Credit	ECIS	
7	2	2	-	6	

Course Category (Credit)					
Basic Sciences Engineering Sciences Design General Education Social					
X					

Course Language	Course Level	Course Type
Turkish	Undergraduate	Elective

Prerequisite(s) if any	
Objectives of the Course	The main of the course is to introduce the Models of Real Projective Plane
Short Course Content	Basic concepts, Models of Real Projective Plane, Closed surfaces, orientable surface, Möbius strip

	Learning Outcomes of the Course	Contributed PO(s)	Teaching Methods *	Measuring Methods **
1	Have sufficient knowledge about subjects in Finite Geometry.	1,2	1,2	A
2	To have sufficient theoretical and practical knowledge of Finite Geometry.	1,2	1,2	A
3	Develops ability to analyze and solve problems encountered	3,4,5,9	2,10	A
4	Analytical thinking skills develop and the ability to make individual and independent decisions develops.	3,4,5,9	10,11	A
5	The ability to analyze and interpret data, apply interpretation to other data, and apply this information in a computer environment develops.	13	10,11	A
6				
7				
8				

^{*}Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

Main Textbook	Models of the real projective plane, François Apery
Supporting References	Projektif Geometri, Prof. Dr. Rüstem Kaya
Necessary Course Material	

	Course Schedule
1	Some representations of he real projective plane before 1900
2	Closed surfaces
3	Examples of Closed surfaces
4	Examples of Closed surfaces
5	A graph of a Closed surfaces
6	Homeomorphic Closed surfaces
7	Problem solving
8	Midterm
9	2-Complex structure
10	Möbius strip
11	Euler characteristic
12	Problem solving
13	Topologically embedding in Closed surfaces
14	Closed orientable surface
15	Problem solving
16,17	Final Exam

Calculation of Course Workload				
Activities	Number	Time (Hour)	Total Workload (Hour)	
Course Time (number of course hours per week)	14	4	56	
Classroom Studying Time (review, reinforcing, prestudy,)	14	4	56	
Homework	5	4	20	
Quiz Exam				
Studying for Quiz Exam				
Oral exam				
Studying for Oral Exam				
Report (Preparation and presentation time included)				
Project (Preparation and presentation time included)				
Presentation (Preparation time included)				
Mid-Term Exam	1	2	2	
Studying for Mid-Term Exam	1	20	20	
Final Exam	1	2	2	
Studying for Final Exam	1	30	30	
	Т	otal workload		
	Total	workload / 30		
	Course	ECTS Credit	6	

Evaluation			
Activity Type	%		
Mid-term	40		
Bir öğe seçin.			
Bir öğe seçin.			
Final Exam	60		
Total	100		

	RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAM OUTCOMES (PO) (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)				
NO	PROGRAM OUTCOME	Contribution			
1	The ability to apply knowledges of Mathematics and Computer Sciences,	4			
2	To have sufficient theoretical and practical knowledge of Mathematics at international level,	5			
3	The ability of describing, modelling and solving of mathematical problems at Mathematics and related subjects,	5			
4	The skill to solve and design a problem process in accordance with a defined target,	5			
5	Skills to analyze data, interpret and apply to other datum and using these data on computer,	4			
6	The skill to use the modern techniques and computational tools needed for mathematical applications,	3			
7	The skill to make team work within the discipline and interdisciplinary,	2			
8	The ability to improve oneself by following the developments on other modern, scientific and technological subjects as well as Mathematics and Computer Sciences,	2			
9	The skill to communicate orally and in written way, in a clear and concise manner by having individual work skills and ability to independently decide and analytical thinking,	4			
10	The skill to have professional and ethical responsibility,	2			
11	The skill to have consciousness for quality issues and scientific research,	2			
12	The skill to be sensitive to environmental issues related with problems and development of living area and consistent in the social relations,	1			
13	Ability to solve problems in the working life faced to find an appropriate algoritms via mathematical modeling and to write computer programs,	4			
14	The skill to developed design of software systems at different complex levels,	1			
15	The credence of necessity of life-long learning and ability to apply the formation long-life learning.	1			

LECTUTER(S)				
Prepared by	Prof. Dr. Ziya AKÇA			
Signature(s)				

Date:12.07.2024