



ESKİŞEHİR OSMANGAZİ UNİVERSİTY



## FACULTY OF SCIENCES

## MATHEMATICS AND COMPUTER SCIENCES DEPARTMENT

## **COURSE INFORMATION FORM**

| Course Name                              |                        |                          |                        |                   | Course Code |        |
|------------------------------------------|------------------------|--------------------------|------------------------|-------------------|-------------|--------|
| Game Theory                              |                        |                          |                        |                   | 821617009   |        |
| Numb                                     |                        | of Course Hours per Week |                        |                   |             | DOTO   |
| Semester                                 | Theory                 |                          | Practice               |                   | Credit      | ECTS   |
| 7                                        | 3                      |                          | 0                      | -                 |             | 5      |
|                                          |                        | C                        | ourse Category (Credi  | t)                |             |        |
| Basic Sciences                           | Engineerin<br>Sciences | g                        | Design                 | General Education |             | Social |
| Х                                        |                        |                          |                        |                   |             |        |
| Course Language Course Level Course Type |                        |                          |                        |                   | ourse Type  |        |
| Turkish                                  |                        |                          | Undergraduate Elective |                   | Elective    |        |

| Prerequisite(s) if any      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objectives of the<br>Course | The aim of the course is to endow students with advanced game theoretical tools and provide them to apply these tools .                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Short Course Content        | Matrix games: Definations and basic concepts, $2 \times 2$ games, $2 \times n$ games, $m \times 2$ games, $m \times n$ games, diagonal games, symmetric games. Infinite antagonistic games: Equilibrium situations, optimal strategies, conditional compact games, continuous games in unit square, convex games. Games without a partner: Nash theorem. Partnership games: characteristic functions, imputations and dominance, kernel of the game, von Neumann-Morgenstern solutions, Shapley vector. Stage games: behavior strategies, depletion games, stochastic games. |

|   | Learning Outcomes of the Course                                                                              | Contributed<br>PO(s) | Teaching<br>Methods * | Measuring<br>Methods ** |
|---|--------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-------------------------|
| 1 | Student learns fundamental concepts about game theory.                                                       | 1,3,6                | 1,2,5                 | А                       |
| 2 | Student understands relation between game theory and other science branches.                                 | 3,7                  | 1,2,5                 | А                       |
| 3 | Student understands applications of game theory in other science branches.                                   | 3,7                  | 1,2,4,5               | А                       |
| 4 | Student realizes responses of game theory in real life.                                                      | 8,12,15              | 1,2,4,5               | А                       |
| 5 | Analytical thinking skills and the ability to make individual and independent decisions of student develops. | 8,9                  | 1,2,5                 | А                       |
| 6 | Ability to analyze and solve problems encountered of student develops.                                       | 4,9,13               | 1,2,5                 | А                       |
| 7 | Student learns computer applications of game theory.                                                         | 5,8,13               | 1,2,5                 | А                       |
| 8 | Ability to construct algorithm of student develops with game theory.                                         | 5,8,13               | 1,2,4,5               | А                       |

<sup>\*</sup>Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

<sup>\*\*</sup>Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

| Main Textbook                | Mehmet Ahlatçıoğlu, Fatma Tiryaki, Oyunlar Teorisi, YTÜ Yayın No: YTÜ.FE.DK-<br>98.0343, İstanbul-1998. |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Supporting<br>References     | Emrah Akyar, Khalik G. Guseinov, Serkan A. Düzce, Oyun Teorisi, Seçkin Yayınevi, 2010.                  |  |  |  |
| Necessary Course<br>Material | -                                                                                                       |  |  |  |

|       | Course Schedule                                                                                |
|-------|------------------------------------------------------------------------------------------------|
| 1     | Matrix games: Definitions and basic concepts                                                   |
| 2     | Min-max theorem, 2×2 games, 2×n games                                                          |
| 3     | m×2 games, m×n games                                                                           |
| 4     | Diagonal games, symmetric games, various applications                                          |
| 5     | Infinite antagonistic games: Equilibrium situations, optimal strategies                        |
| 6     | Conditional compact games, continuous games in unit square, convex games, various applications |
| 7     | Games without a partner: Nash theorem.                                                         |
| 8     | Mid-Term Exam                                                                                  |
| 9     | Prisoners' dilemma, of the sexes and various applications                                      |
| 10    | Kernel of the game, von Neumann-Morgenstern solutions                                          |
| 11    | Shapley vector, various applications                                                           |
| 12    | Stage games, behavior strategies                                                               |
| 13    | Depletion games                                                                                |
| 14    | Stochastic games, repeated games                                                               |
| 15    | General reputation                                                                             |
| 16,17 | Final Exam                                                                                     |

| Calculation of Course Workload                           |                     |                |                             |
|----------------------------------------------------------|---------------------|----------------|-----------------------------|
| Activities                                               | Number              | Time<br>(Hour) | Total<br>Workload<br>(Hour) |
| Course Time (number of course hours per week)            | 14                  | 3              | 42                          |
| Classroom Studying Time (review, reinforcing, prestudy,) | 14                  | 3              | 42                          |
| Homework                                                 |                     |                |                             |
| Quiz Exam                                                |                     |                |                             |
| Studying for Quiz Exam                                   |                     |                |                             |
| Oral exam                                                |                     |                |                             |
| Studying for Oral Exam                                   |                     |                |                             |
| Report (Preparation and presentation time included)      |                     |                |                             |
| Project (Preparation and presentation time included)     |                     |                |                             |
| Presentation (Preparation time included)                 |                     |                |                             |
|                                                          |                     |                |                             |
|                                                          |                     |                |                             |
| Mid-Term Exam                                            | 1                   | 2              | 2                           |
| Studying for Mid-Term Exam                               | 1                   | 20             | 20                          |
| Final Exam                                               | 1                   | 2              | 2                           |
| Studying for Final Exam                                  | 1                   | 30             | 30                          |
|                                                          | Total workload      |                |                             |
|                                                          | Total workload / 30 |                |                             |
|                                                          | Course              | ECTS Credit    | 5                           |

| Evaluation     |     |  |  |
|----------------|-----|--|--|
| Activity Type  | %   |  |  |
| Mid-term       | 40  |  |  |
| Quiz           |     |  |  |
| Homework       |     |  |  |
| Bir öğe seçin. |     |  |  |
| Bir öğe seçin. |     |  |  |
| Final Exam     | 60  |  |  |
| Total          | 100 |  |  |

Г

|    | <b>RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAM</b><br><b>OUTCOMES (PO)</b> (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)                        |   |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| NO | PROGRAM OUTCOME                                                                                                                                                                 |   |  |  |  |
| 1  | The ability to apply knowledges of Mathematics and Computer Sciences,                                                                                                           | 5 |  |  |  |
| 2  | To have sufficient theoretical and practical knowledge of Mathematics at international level,                                                                                   | 4 |  |  |  |
| 3  | The ability of describing, modelling and solving of mathematical problems at Mathematics and related subjects,                                                                  | 5 |  |  |  |
| 4  | The skill to solve and design a problem process in accordance with a defined target,                                                                                            | 4 |  |  |  |
| 5  | Skills to analyze data, interpret and apply to other datum and using these data on computer,                                                                                    | 4 |  |  |  |
| 6  | The skill to use the modern techniques and computational tools needed for mathematical applications,                                                                            | 3 |  |  |  |
| 7  | The skill to make team work within the discipline and interdisciplinary,                                                                                                        | 3 |  |  |  |
| 8  | The ability to improve oneself by following the developments on other modern, scientific and technological subjects as well as Mathematics and Computer Sciences,               | 4 |  |  |  |
| 9  | The skill to communicate orally and in written way, in a clear and concise manner by having individual work skills and ability to independently decide and analytical thinking, | 5 |  |  |  |
| 10 | The skill to have professional and ethical responsibility,                                                                                                                      | 2 |  |  |  |
| 11 | The skill to have consciousness for quality issues and scientific research,                                                                                                     | 5 |  |  |  |
| 12 | The skill to be sensitive to environmental issues related with problems and development of living area and consistent in the social relations,                                  | 1 |  |  |  |
| 13 | Ability to solve problems in the working life faced to find an appropriate algoritms via mathematical modeling and to write computer programs,                                  | 4 |  |  |  |
| 14 | The skill to developed design of software systems at different complex levels,                                                                                                  | 1 |  |  |  |
| 15 | The credence of necessity of life-long learning and ability to apply the formation long-life learning.                                                                          | 2 |  |  |  |

| LECTUTER(S)  |                     |  |  |  |  |
|--------------|---------------------|--|--|--|--|
| Prepared by  | Doç. Dr. Ömer Ünsal |  |  |  |  |
| Signature(s) |                     |  |  |  |  |

Date:06.06.2024