

ESKİŞEHİR OSMANGAZİ UNİVERSİTY

FACULTY OF SCIENCES

MATHEMATICS AND COMPUTER SCIENCES DEPARTMENT

COURSE INFORMATION FORM

Course Name Course Code							
Numerical Analysis I					321613006		
Semester Number of Course Hours per Week Credit ECTS					ECTS		
Semester	Theory		Practice	Credit		ECIS	
3	3		0			5	
Course Category (Credit)							
Basic Sciences	ces Engineering Design General Education		Social				
Х							
Course Language Course Level Course Type							

Course Language	Course Level	Course Type
Turkish	Undergraduate	Elective

Prerequisite(s) if any		
Objectives of the Course	such as root finding interpolation numerical integration and differentiation and numer	
Short Course Content	This course covers the fundamentals and applications of numerical methods. The content includes the solution of linear equation systems, root-finding methods, interpolation techniques, and numerical integration and differentiation.	

	Learning Outcomes of the Course	Contributed PO(s)	Teaching Methods *	Measuring Methods **
1	Understand the fundamentals of numerical methods and comprehend their advantages and disadvantages compared to analytical methods.	1	1,2,5	А
2	Apply root-finding methods to approximate the roots of functions.	2,3	1,2,5	А
3	Use interpolation techniques to estimate values between data points.	3,4,5	1,2,5	А
4	Solve basic mathematical problems such as integration and differentiation using numerical methods.	1,4,6	1,2,5	А
5	Apply various numerical methods to solve linear equation systems.	2,3,4	1,2,5	А
6	Analyze errors in numerical methods and evaluate the accuracy of the results.	5,6,7	1,2,5	А
7	Implement numerical methods in computer programs and develop numerical algorithms using programming languages such as Python, MATLAB, or similar.	7,8,9,10	14,15	А
8	Recognize the application areas of numerical methods and understand their importance in engineering, physics,	11,12,13,14,15	14,15	А

*Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

ESOGÜ DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES © 2024

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

	economics, and other fields. Develop solutions to real-world problems through numerical analysis.				
Main Textbook	Main Textbook Burden, R. L. & Faires J. D, Numerical Analysis, Fifth Ed., PWS Publishing Company, Boston, 1993.				
Supporting References					
Necessary Course Material					
Course Schedule					
1 Taylor theorem	1 Taylor theorem and Taylor series				
2 Approximations and error analysis					
3 Numerical solut					

4	Bisection method, Regula Falsi method and Newton Raphson method
5	Secant method, fixed point iteration
6	Interpolation and polinomial approximatin, Curve fitting
7	Lagrange interpolation and Newton interpolation
8	Mid-Term Exam
9	Numerical derivative, forward, backward and centeral difference formulas
10	Numerical integration, Rectangular rule and trapez rule
11	Simpson method
12	Analytical solutions of linear equations system, Gauss elimination, Crammer rule
13	Numerical solutions of linear equations system, Jacobi method, Gauss Seidel method

14	Least squares method	

	15	Computer	algorithms	for numerical	methods
--	----	----------	------------	---------------	---------

16,17 Final Exam

Calculation of Course W	orkload		
Activities	Number	Time (Hour)	Total Workload (Hour)
Course Time (number of course hours per week)	14	3	42
Classroom Studying Time (review, reinforcing, prestudy,)	14	3	42
Homework			
Quiz Exam			
Studying for Quiz Exam			
Oral exam			
Studying for Oral Exam			
Report (Preparation and presentation time included)			
Project (Preparation and presentation time included)			
Presentation (Preparation time included)	1	5	5
Mid-Term Exam	1	2	2
Studying for Mid-Term Exam	1	20	20
Final Exam	1	2	2
Studying for Final Exam	1	30	30
	Т	otal workload	143
	Total	workload / 30	4,76
	Course	ECTS Credit	5

*Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

Evaluation		
Activity Type	%	
Mid-term	50	
Quiz		
Homework		
Bir öğe seçin.		
Final Exam	50	
Total	100	

	RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAM OUTCOMES (PO) (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)				
NO	PROGRAM OUTCOME	Contribution			
1	The ability to apply knowledges of Mathematics and Computer Sciences,	5			
2	To have sufficient theoretical and practical knowledge of Mathematics at international level,	3			
3	The ability of describing, modelling and solving of mathematical problems at Mathematics and related subjects,	5			
4	The skill to solve and design a problem process in accordance with a defined target,	5			
5	Skills to analyze data, interpret and apply to other datum and using these data on computer,	4			
6	The skill to use the modern techniques and computational tools needed for mathematical applications,	5			
7	The skill to make team work within the discipline and interdisciplinary,	3			
8	The ability to improve oneself by following the developments on other modern, scientific and technological subjects as well as Mathematics and Computer Sciences,	4			
9	The skill to communicate orally and in written way, in a clear and concise manner by having individual work skills and ability to independently decide and analytical thinking,	2			
10	The skill to have professional and ethical responsibility,	2			
11	The skill to have consciousness for quality issues and scientific research,	2			
12	The skill to be sensitive to environmental issues related with problems and development of living area and consistent in the social relations,	1			
13	Ability to solve problems in the working life faced to find an appropriate algoritms via mathematical modeling and to write computer programs,	5			
14	The skill to developed design of software systems at different complex levels,	4			
15	The credence of necessity of life-long learning and ability to apply the formation long-life learning.	2			

	LECTUTER(S)				
Prepared by	Assoc. Dr. Özlem ERSOY HEPSON				
Signature(s)					

Date:07.07.2024

ESOGÜ DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES © 2024