

## T.C.



## ESKİŞEHİR OSMANGAZİ UNİVERSİTY FACULTY OF SCIENCES

## MATHEMATICS AND COMPUTER SCIENCES DEPARTMENT

## **COURSE INFORMATION FORM**

| Course Name                             | Course Code |
|-----------------------------------------|-------------|
| Mathematical Modeling and Simulation II |             |

| Semester | Number of Cours | se Hours per Week | Credit | ECTS |  |
|----------|-----------------|-------------------|--------|------|--|
| Semester | Theory          | Practice          | Credit | ECIS |  |
| 8        | 2               | 2                 |        | 6    |  |

| Course Category (Credit)                                            |  |  |  |        |  |
|---------------------------------------------------------------------|--|--|--|--------|--|
| Basic Sciences Engineering Sciences Design General Education Social |  |  |  | Social |  |
| X                                                                   |  |  |  |        |  |

| Course Language | Course Level  | Course Type |
|-----------------|---------------|-------------|
| Turkish         | Undergraduate | Elective    |

| Prerequisite(s) if any      |                                                                                                                                                                                                                                                         |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objectives of the<br>Course | The aim of this course is to teach students how to write computer algorithms using simulation and modeling techniques. The course aims to develop solutions to real-world problems and to test these solutions practically in a simulation environment. |
| <b>Short Course Content</b> | To gain the ability to create mathematical models and perform simulations.                                                                                                                                                                              |

|    | <b>Learning Outcomes of the Course</b>                                                                                                                         | Contributed PO(s) | Teaching<br>Methods * | Measuring<br>Methods ** |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|-------------------------|
| 1  | Demonstrate a clear understanding of fundamental concepts and principles of simulation and mathematical modeling.                                              | 1,2,3,4           | 1,2,5                 | A                       |
| 2  | Create mathematical models to represent real-world systems and processes using appropriate equations and structures.                                           | 5,8,13,14         | 1,2,5                 | A                       |
| 3  | Write and utilize basic commands in simulation languages to model and analyze systems.                                                                         | 3,4,5,8           | 1,2,5                 | A                       |
| 4  | Design simulation experiments and scenarios to investigate<br>the behavior of modeled systems under various conditions.                                        | 6,8,9             | 14                    | J                       |
| 5  | Assess the validity of models by comparing simulation results with real-world data and expected outcomes.                                                      | 7,8,9,11          | 15                    | J                       |
| 6  | Use simulation and modeling techniques to develop solutions for practical problems in various domains such as engineering, logistics, healthcare, and finance. | 12,13,14,15       | 12                    | G                       |
| 7  |                                                                                                                                                                |                   |                       |                         |
| 8  |                                                                                                                                                                |                   |                       |                         |
| 9  |                                                                                                                                                                |                   |                       |                         |
| 10 |                                                                                                                                                                |                   |                       |                         |

<sup>\*</sup>Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

<sup>\*\*</sup>Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

| Main Textbook                                                                                                                                                             | "Simulation Modeling and Analysis, Averill M. Law and W. David Kelton. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Supporting References  Discrete-Event System Simulation, Jerry Banks, John S. Carson, Barry L. Nelson, a David M. Nicol. System Simulation and Modeling, Sankar Sengupta. |                                                                        |
| Necessary Course<br>Material                                                                                                                                              | Computer                                                               |

|       | Course Schedule                                               |  |  |  |  |
|-------|---------------------------------------------------------------|--|--|--|--|
| 1     | Computer-based modeling tools                                 |  |  |  |  |
| 2     | Computer-based modeling tools                                 |  |  |  |  |
| 3     | Modeling process and stages                                   |  |  |  |  |
| 4     | Linear and non-linear models                                  |  |  |  |  |
| 5     | Modeling examples with differential equations                 |  |  |  |  |
| 6     | Modeling examples with differential equations                 |  |  |  |  |
| 7     | Creating a simple simulation                                  |  |  |  |  |
| 8     | Mid-Term Exam                                                 |  |  |  |  |
| 9     | Use of mathematical models for simulation                     |  |  |  |  |
| 10    | Interpreting simulation results                               |  |  |  |  |
| 11    | Model validation methods                                      |  |  |  |  |
| 12    | Mathematical modeling in engineering, physics, and economics  |  |  |  |  |
| 13    | Modeling examples in health, environment, and social sciences |  |  |  |  |
| 14    | Developing simulation projects                                |  |  |  |  |
| 15    | Developing simulation projects                                |  |  |  |  |
| 16,17 | Final Exam                                                    |  |  |  |  |

| Calculation of Course Workload                           |        |                |                             |  |
|----------------------------------------------------------|--------|----------------|-----------------------------|--|
| Activities                                               | Number | Time<br>(Hour) | Total<br>Workload<br>(Hour) |  |
| Course Time (number of course hours per week)            | 14     | 4              | 56                          |  |
| Classroom Studying Time (review, reinforcing, prestudy,) | 14     | 4              | 56                          |  |
| Homework                                                 |        |                |                             |  |
| Quiz Exam                                                |        |                |                             |  |
| Studying for Quiz Exam                                   |        |                |                             |  |
| Oral exam                                                |        |                |                             |  |
| Studying for Oral Exam                                   |        |                |                             |  |
| Report (Preparation and presentation time included)      |        |                |                             |  |
| Project (Preparation and presentation time included)     |        |                |                             |  |
| Presentation (Preparation time included)                 | 14     | 3              | 42                          |  |
| Mid-Term Exam                                            | 1      | 2.             | 2                           |  |
| Studying for Mid-Term Exam                               | 1      | 10             | 10                          |  |
| Final Exam                                               | 1      | 2              | 2                           |  |
| Studying for Final Exam                                  | 1      | 20             | 20                          |  |
| , ,                                                      | Т      | otal workload  | 188                         |  |
|                                                          | Total  | workload / 30  | 6.26                        |  |
|                                                          | Course | ECTS Credit    | 6                           |  |

| Evaluation     |     |  |  |
|----------------|-----|--|--|
| Activity Type  | %   |  |  |
| Mid-term       |     |  |  |
| Quiz           |     |  |  |
| Homework       | 50  |  |  |
| Bir öğe seçin. |     |  |  |
| Bir öğe seçin. |     |  |  |
| Final Exam     | 50  |  |  |
| Total          | 100 |  |  |

|    | RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAM OUTCOMES (PO) (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)                                         |   |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| NO | PROGRAM OUTCOME                                                                                                                                                                 |   |  |  |  |
| 1  | The ability to apply knowledges of Mathematics and Computer Sciences,                                                                                                           | 4 |  |  |  |
| 2  | To have sufficient theoretical and practical knowledge of Mathematics at international level,                                                                                   | 4 |  |  |  |
| 3  | The ability of describing, modelling and solving of mathematical problems at Mathematics and related subjects,                                                                  | 5 |  |  |  |
| 4  | The skill to solve and design a problem process in accordance with a defined target,                                                                                            | 5 |  |  |  |
| 5  | Skills to analyze data, interpret and apply to other datum and using these data on computer,                                                                                    | 4 |  |  |  |
| 6  | The skill to use the modern techniques and computational tools needed for mathematical applications,                                                                            | 5 |  |  |  |
| 7  | The skill to make team work within the discipline and interdisciplinary,                                                                                                        | 5 |  |  |  |
| 8  | The ability to improve oneself by following the developments on other modern, scientific and technological subjects as well as Mathematics and Computer Sciences,               | 4 |  |  |  |
| 9  | The skill to communicate orally and in written way, in a clear and concise manner by having individual work skills and ability to independently decide and analytical thinking, | 4 |  |  |  |
| 10 | The skill to have professional and ethical responsibility,                                                                                                                      | 2 |  |  |  |
| 11 | The skill to have consciousness for quality issues and scientific research,                                                                                                     | 2 |  |  |  |
| 12 | The skill to be sensitive to environmental issues related with problems and development of living area and consistent in the social relations,                                  | 1 |  |  |  |
| 13 | Ability to solve problems in the working life faced to find an appropriate algoritms via mathematical modeling and to write computer programs,                                  | 4 |  |  |  |
| 14 | The skill to developed design of software systems at different complex levels,                                                                                                  | 4 |  |  |  |
| 15 | The credence of necessity of life-long learning and ability to apply the formation long-life learning.                                                                          | 2 |  |  |  |

|              | LECTUTER(S)                      |  |  |  |  |
|--------------|----------------------------------|--|--|--|--|
| Prepared by  | Assoc. Dr. Özlem<br>ERSOY HEPSON |  |  |  |  |
| Signature(s) |                                  |  |  |  |  |

**Date:**07.07.2024