

FACULTY OF SCIENCES

MATHEMATICS AND COMPUTER SCIENCES DEPARTMENT

COURSE INFORMATION FORM

Course Name					Course Code		
Mathematics, Nature and Art I							
Number of Course Hours per Week						DOTO	
Semester	Theory		Practice Credit		Credit	ECTS	
7	2		2	-		6	
Course Category (Credit)							
Basic Sciences	Engineerin Sciences	ng	Design	General Education		Social	
X							
Course Language			Course Level		Co	ourse Type	

Course Language	Course Level	Course Type
Turkish	Undergraduate	Compulsory

Prerequisite(s) if any	
Objectives of the Course	In this course, the theory of curves will be examined, and simultaneously, the applications of mathematics to various disciplines will be investigated.
Short Course Content	The theory of curves helps us understand how mathematics is applied across different fields

	Learning Outcomes of the Course	Contributed PO(s)	Teaching Methods *	Measuring Methods **
1	Questions related to the concept of curves will be addressed.	1,2,3,4,5	1,2,5,10,13	A, D
2	Covariant derivatives will be studied.	1,2,3,4,5	1,2,5,10,13	A, D
3	Helices will be studied. The concept of involutes will be exploredApplications of curves in Maple will be taught.	1,2,3,4,5	1,2,5,10,13	A, D
4	Evolutes will be learned. Bertand curves will be examined.	1,2,3,4,5	1,2,5,10,13	A, D
5	Applications of mathematics to other disciplines will be researched.	1,2,3,4,5	1,2,5,10,13	A, D
6	A new project topic will be developed using the learned concepts.	1,2,3,4,5	1,2,5,10,13	A, D

^{*}Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

Main Textbook	Diferential Geometry, Barret O'Neill
Supporting References	Anne Burns, Gemetry and Nature . Maria Mannone , Mathematics, Nature and art.
Necessary Course Material	

	Course Schedule		
1	Derivative of a vector field		
2	Covariant derivative		
3	Frenet Formulas		
4	Helices		
5	Involute		
6	Project work		
7	Examples		
8	Mid-Term Exam		
9	Evolut		
10	Bertrand curves		
11	Applications of curves in Maple		
12	Review of articles on mathematics related to nature and art		
13	Review of articles on mathematics related to nature and art		
14	Project work		
15	Project work		
16,17	Final Exam		

Calculation of Course Workload			
Activities	Number	Time (Hour)	Total Workload (Hour)
Course Time (number of course hours per week)	14	4	56
Classroom Studying Time (review, reinforcing, prestudy,)	14	4	56
Homework			
Quiz Exam			
Studying for Quiz Exam			
Oral exam			
Studying for Oral Exam			
Report (Preparation and presentation time included)			
Project (Preparation and presentation time included)			
Presentation (Preparation time included)			
Mid-Term Exam	1		
Studying for Mid-Term Exam			
Final Exam	1		
Studying for Final Exam			
	Т	otal workload	
	Total	workload / 30	
	Course	ECTS Credit	6

Evaluation			
Activity Type	%		
Mid-term	50		
Quiz			
Homework			
Bir öğe seçin.			
Bir öğe seçin.			
Final Exam	50		
Total	100		

	RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAM OUTCOMES (PO) (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)				
NO	PROGRAM OUTCOME	Contribution			
1	Matematik ve ilgili disiplinler ilişkisini anlama becerisi	4			
2	Matematik alanında uluslararası düzeyde teori ve uygulamada yeterli bilgi birikimine sahip olmak	4			
3	Matematik ve ilgili alanlarda matematiksel problemleri tanımlama ve çözme becerisi	4			
4	Tanımlanmış bir hedef doğrultusunda var olan problem sürecini çözümleme ve tasarlama becerisi	5			
5	Matematik ve bilgisayar bilimlerinin yanı sıra diğer bilimsel, teknolojik ve çağdaş konular	5			
6	Matematik ve ilgili disiplinler ilişkisini anlama becerisi	5			
7	Matematik alanında uluslararası düzeyde teori ve uygulamada yeterli bilgi birikimine sahip olmak	5			

LECTUTER(S)					
Prepared by	Prof.Dr Nevin Gürbüz				
Signature(s)					

Date: 24.07..2024