

## T.C.

## ESKİŞEHİR OSMANGAZİ UNIVERSITY FACULTY OF SCIENCES



## MATHEMATICS AND COMPUTER SCIENCES DEPARTMENT

## **COURSE INFORMATION FORM**

| Course Name                                                                  | Course Code |
|------------------------------------------------------------------------------|-------------|
| Applications of Numerical Solutions of the Partial Differential Equations II |             |

| Semester | Number of Cours | Number of Course Hours per Week |   | ECTS   |      |
|----------|-----------------|---------------------------------|---|--------|------|
| Semester |                 |                                 |   | Credit | ECIS |
| 8        | 2               | 2                               | - | 6      |      |

| Course Category (Credit)                                            |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|
| Basic Sciences Engineering Sciences Design General Education Social |  |  |  |  |
| X                                                                   |  |  |  |  |

| Course Language | Course Level  | Course Type |
|-----------------|---------------|-------------|
| Turkish         | Undergraduate | Compulsory  |

| Prerequisite(s) if any      |                                                                                                       |
|-----------------------------|-------------------------------------------------------------------------------------------------------|
| Objectives of the<br>Course | Finding the numerical solutions of the partial differential equations using the finite element method |
| Short Course Content        | Derivation of the finite element method, Parabolic, hyperbolic and elliptic equations                 |

|   | Learning Outcomes of the Course                                                                                                                           | Contributed PO(s)                | Teaching<br>Methods * | Measuring<br>Methods ** |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|-------------------------|
| 1 | Development of the finite element method and finding the numerical solutions of the partial differential equations existing the physical and social areas | 1,2,3,4,5,6,7,8,9,10,11,13,14,15 | 1,2,6,10,11,15        | D, G                    |
| 2 |                                                                                                                                                           |                                  |                       |                         |
| 3 |                                                                                                                                                           |                                  |                       |                         |
| 4 |                                                                                                                                                           |                                  |                       |                         |
| 5 |                                                                                                                                                           |                                  |                       |                         |
| 6 |                                                                                                                                                           |                                  |                       |                         |
| 7 |                                                                                                                                                           |                                  |                       |                         |
| 8 |                                                                                                                                                           |                                  |                       |                         |

<sup>\*</sup>Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

<sup>\*\*</sup>Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

| Main Textbook                | An introduction to finite element method, J. N. Reddy                                                                                                                                                                               |  |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Supporting<br>References     | Numerical solution of the partial differential equations by finite element method, Claes Johnson (Cambridge University Press) Finite Element Analysis and Applications, R Wait and A. R. Mitchell, (John Wiley and Sons Publication |  |  |
| Necessary Course<br>Material |                                                                                                                                                                                                                                     |  |  |

|       | Course Schedule                                                                                      |
|-------|------------------------------------------------------------------------------------------------------|
| 1     | Introduction of the finite element method                                                            |
| 2     | Variational methods                                                                                  |
| 3     | The derivation of the basis functions for the finite element method for the one dimensional problems |
| 4     | Finite element methods: Collocation Subdomain                                                        |
| 5     | Finite element methods: Galerkin, Least squares                                                      |
| 6     | The derivation of the basis functions for the finite element method for the two dimensional problems |
| 7     | Solving problem                                                                                      |
| 8     | Mid-term exam                                                                                        |
| 9     | Finite element method: Collocation and Subdomain collocation for two dimensional problems            |
| 10    | Finite element method: Collocation and Subdomain collocation for two dimensional problems            |
| 11    | Finite element method: Galerkin and Least square methods for two dimensional problems                |
| 12    | Finite element method: Galerkin and Least square methods for two dimensional problems                |
| 13    | Finite element method for time dependent problems                                                    |
| 14    | Finite element method for time dependent problems                                                    |
| 15    | Solving problems                                                                                     |
| 16,17 | Final Exam                                                                                           |

| Calculation of Course Workload                           |        |                     |                             |  |
|----------------------------------------------------------|--------|---------------------|-----------------------------|--|
| Activities                                               | Number | Time<br>(Hour)      | Total<br>Workload<br>(Hour) |  |
| Course Time (number of course hours per week)            | 14     | 4                   | 56                          |  |
| Classroom Studying Time (review, reinforcing, prestudy,) | 14     | 4                   | 56                          |  |
| Homework                                                 | 1      | 28                  | 28                          |  |
| Quiz Exam                                                |        |                     |                             |  |
| Studying for Quiz Exam                                   |        |                     |                             |  |
| Oral exam                                                |        |                     |                             |  |
| Studying for Oral Exam                                   |        |                     |                             |  |
| Report (Preparation and presentation time included)      |        |                     |                             |  |
| Project (Preparation and presentation time included)     |        |                     |                             |  |
| Presentation (Preparation time included)                 | 1      | 40                  | 40                          |  |
| Mid-Term Exam                                            |        |                     |                             |  |
| Studying for Mid-Term Exam                               |        |                     |                             |  |
| Final Exam                                               |        |                     |                             |  |
| Studying for Final Exam                                  |        |                     |                             |  |
|                                                          | T      | Total workload / 30 |                             |  |
|                                                          | Total  |                     |                             |  |
|                                                          | Course | ECTS Credit         | 6                           |  |

| Evaluation     |     |  |  |
|----------------|-----|--|--|
| Activity Type  | %   |  |  |
| Homework       | 40  |  |  |
| Presentation   | 60  |  |  |
| Bir öğe seçin. |     |  |  |
| Bir öğe seçin. |     |  |  |
| Bir öğe seçin. |     |  |  |
| Final Exam     | 100 |  |  |
| Total          | 40  |  |  |

|    | RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAD OUTCOMES (PO) (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)                                         |              |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|
| NO | PROGRAM OUTCOME                                                                                                                                                                 | Contribution |  |  |
| 1  | The ability to apply knowledges of Mathematics and Computer Sciences,                                                                                                           | 4            |  |  |
| 2  | To have sufficient theoretical and practical knowledge of Mathematics at international level,                                                                                   | 4            |  |  |
| 3  | The ability of describing, modelling and solving of mathematical problems at Mathematics and related subjects,                                                                  | 5            |  |  |
| 4  | The skill to solve and design a problem process in accordance with a defined target,                                                                                            | 5            |  |  |
| 5  | Skills to analyze data, interpret and apply to other datum and using these data on computer,                                                                                    | 3            |  |  |
| 6  | The skill to use the modern techniques and computational tools needed for mathematical applications,                                                                            | 4            |  |  |
| 7  | The skill to make teamwork within the discipline and interdisciplinary,                                                                                                         | 3            |  |  |
| 8  | The ability to improve oneself by following the developments on other modern, scientific and technological subjects as well as Mathematics and Computer Sciences,               | 3            |  |  |
| 9  | The skill to communicate orally and in written way, in a clear and concise manner by having individual work skills and ability to independently decide and analytical thinking, | 3            |  |  |
| 10 | The skill to have professional and ethical responsibility,                                                                                                                      | 2            |  |  |
| 11 | The skill to have consciousness for quality issues and scientific research,                                                                                                     | 4            |  |  |
| 12 | The skill to be sensitive to environmental issues related with problems and development of living area and consistent in the social relations,                                  | 1            |  |  |
| 13 | Ability to solve problems in the working life faced to find an appropriate algorithms via mathematical modeling and to write computer programs,                                 | 4            |  |  |
| 14 | The skill to developed design of software systems at different complex levels,                                                                                                  | 2            |  |  |
| 15 | The credence of necessity of life-long learning and ability to apply the formation long-life learning.                                                                          | 4            |  |  |

| LECTUTER(S)  |                                |  |  |  |
|--------------|--------------------------------|--|--|--|
| Prepared by  | Assoc. Prof. Melis<br>Zorşahin |  |  |  |
| Signature(s) |                                |  |  |  |

**Date:**06.06.2024