

T.C.

ESKİŞEHİR OSMANGAZİ UNİVERSİTY FACULTY OF SCIENCES

MATHEMATICS AND COMPUTER SCIENCES DEPARTMENT

COURSE INFORMATION FORM

Course Name	Course Code	
Computer Graphics	821618010	

Semester	Number of Cours	Number of Course Hours per Week		ECTS
Semester	Theory	Practice	Credit	ECIS
8	3	0		5

Course Category (Credit)					
Basic Sciences Engineering Sciences Design General Education Social					
X					

Course Language	Course Level	Course Type
Turkish	Undergraduate	Elective

Prerequisite(s) if any	
Objectives of the Course	Students will understand geometric problems and computer graphics algorithms, Will be able to follow the developments in the field of computer graphics, Gain experience on computer graphic geographic information systems.
Short Course Content	Concepts of computer graphics and it's tecniques, plane scan algorithms, Convex hulls, map overlay, art galery problem, triangulation of a polygon, casting problem, Orthogonal Range Searching, Point Location, Voronoi diagramları

	Learning Outcomes of the Course	Contributed PO(s)	Teaching Methods *	Measuring Methods **
1	Being able to recognize and understand geometric algorithms in encountered problems	1,2,3	1,2,5	A,D
Teach thinking with transformations in geometry.		1,2,4	1,2,5	A,D
3	Develops ability to analyze and solve problems encountered	3,4,5,9	2,10,12	A,D
4	Analytical thinking skills develop and the ability to make individual and independent decisions develops.	3,4,5,9	10,11	A,D
5	The ability to analyze and interpret data, apply interpretation to other data, and apply this information in a computer environment develops.	13	10,11,13	A,D
6				
7				
8				

^{*}Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

Main Textbook	Computational Geometry, Mark de Berg, Marc van Kreveld, Mark Overmars, Otfried Schwarzkopf, Springer
Supporting References	Introduction to Data Structures, Bhagat Singh, Thomas L. Naps, West
Necessary Course Material	

	Course Schedule
1	Introduction to Computer graphic
2	Convex hulls
3	Network type map overlay
4	Planar region map overlay
5	Art galery problem
6	Polygon triangulation
7	Molding problem
8	Mid-Term Exam
9	Linear programming
10	Smallest Enclosing Discs
11	Orthogonal range searching
12	Point Location
13	Point Location
14	Voronoi Diagrams
15	Voronoi Diagrams
16,17	Final Exam

Calculation of Course Workload				
Activities	Number	Time (Hour)	Total Workload (Hour)	
Course Time (number of course hours per week)	14	3	42	
Classroom Studying Time (review, reinforcing, prestudy,)	14	3	42	
Homework				
Quiz Exam				
Studying for Quiz Exam				
Oral exam				
Studying for Oral Exam				
Report (Preparation and presentation time included)				
Project (Preparation and presentation time included)				
Presentation (Preparation time included)				
Mid-Term Exam	1	2	2	
Studying for Mid-Term Exam	1	30	30	
Final Exam	1	2	2	
Studying for Final Exam	1	35	35	
	Т	otal workload	153	
	Total	workload / 30	153/30	
	Course	ECTS Credit	5	

Evaluation				
Activity Type	%			
Mid-term	40			
Bir öğe seçin.				
Bir öğe seçin.				
Final Exam	60			
Total	100			

	RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAM OUTCOMES (PO) (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)				
NO	PROGRAM OUTCOME	Contribution			
1	The ability to apply knowledges of Mathematics and Computer Sciences,	4			
2	To have sufficient theoretical and practical knowledge of Mathematics at international level,	5			
3	The ability of describing, modelling and solving of mathematical problems at Mathematics and related subjects,	5			
4	The skill to solve and design a problem process in accordance with a defined target,	5			
5	Skills to analyze data, interpret and apply to other datum and using these data on computer,	4			
6	The skill to use the modern techniques and computational tools needed for mathematical applications,	4			
7	The skill to make team work within the discipline and interdisciplinary,	3			
8	The ability to improve oneself by following the developments on other modern, scientific and technological subjects as well as Mathematics and Computer Sciences,	4			
9	The skill to communicate orally and in written way, in a clear and concise manner by having individual work skills and ability to independently decide and analytical thinking,	4			
10	The skill to have professional and ethical responsibility,	4			
11	The skill to have consciousness for quality issues and scientific research,	2			
12	The skill to be sensitive to environmental issues related with problems and development of living area and consistent in the social relations,	1			
13	Ability to solve problems in the working life faced to find an appropriate algoritms via mathematical modeling and to write computer programs,	4			
14	The skill to developed design of software systems at different complex levels,	1			
15	The credence of necessity of life-long learning and ability to apply the formation long-life learning.	2			

LECTUTER(S)					
Prepared by	Prof. Dr. Özcan Gelişgen				
Signature(s)					

Date:06.06.2024